Convergence Analysis of a New Implicit Iterative Scheme and Its Application to Delay Caputo Fractional Differential Equations

Author:

Ofem Austine Efut1ORCID,Udo Mfon Okon2,Joseph Oboyi3ORCID,George Reny4ORCID,Chikwe Chukwuka Fernando3

Affiliation:

1. School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4001, South Africa

2. Department of Mathematics, Akwa Ibom State University, Ikot Akpaden, Mkpat Enin P.M. Box 1167, Nigeria

3. Department of Mathematics, University of Calabar, Calabar P.M. Box 1115, Nigeria

4. Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Abstract

This article presents a new three-step implicit iterative method. The proposed method is used to approximate the fixed points of a certain class of pseudocontractive-type operators. Additionally, the strong convergence results of the new iterative procedure are derived. Some examples are constructed to authenticate the assumptions in our main result. At the end, we use our new method to solve a fractional delay differential equation in the sense of Caputo. Our main results improve and generalize the results of many prominent authors in the existing literature.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference37 articles.

1. Two Cscs-Based Iteration Methods For Solving Absolute Value Equations;Gu;J. Appl. Anal. Comput.,2017

2. A variant of the Power–Arnoldi algorithm for computing PageRank;Hu;J. Comput. Appl. Math.,2021

3. Agarwal, P., Jleli, M., and Samet, B. (2018). Fixed Point Theory in Metric Spaces Recent Advances and Applications, Springer.

4. Abbas, M., Asghar, M., and De la Sen, M. (2022). Approximation of the solution of delay fractional differential equation using AA-Iterative Scheme. Mathematics, 10.

5. Strong convergence of a multi-step implicit iterative scheme with errors for common fixed points of uniformly L-Lipschitzian total asymptotically strict pseudocontractive mappings, Results in Nonlinear Analysis 2020;Ofem;Results Nonlinear Anal.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3