Self-Organizing Optimization Based on Caputo’s Fractional Order Gradients

Author:

Tan Sunfu1,Zhang Ni2,Pu Yifei1ORCID

Affiliation:

1. College of Computer Science, Sichuan University, Chengdu 610065, China

2. Library of Sichuan University, Sichuan University, Chengdu 610065, China

Abstract

This paper analyses the condition necessary to guarantee no divergence for Caputo’s fractional order gradient descent (C-FOG) algorithm on multivariate functions. C-FOG is self-organizing, computationally efficient, simple, and understandable. It converges faster than the classical gradient-based optimization algorithms and converges to slightly different points when the order of the fractional derivative is different. The additional freedom of the order is very useful in situations where the diversity of convergence is required, and it also allows for more precise convergence. Comparative experiments on a typical poor conditioned function and adversarial sample generation frameworks demonstrate the convergence performance of C-FOG, showing that it outperforms currently popular algorithms in terms of convergence speed, and more excitingly, the diversity of convergence allows it to exhibit stronger and more stable attack capability in adversarial sample generation procedures (The code for experiments is available at: https://github.com/mulertan/self_optimizing/tree/main, accessed on 30 April 2024).

Funder

National Natural Science Foundation of China

China South Industries Group Corporation (Chengdu) Fire Control Technology Center Project

National Key Research and Development Program Foundation of China

Publisher

MDPI AG

Reference55 articles.

1. Kingmma, D.P., and Lei, B.J. (2015, January 7–9). Adam: A Method for Stochastic Optimization. Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA.

2. Tas, E. (2010, January 11–14). Learning Parameter Optimization of Stochastic Gradient Descent with Momentum for a Stochastic Quadratic. Proceedings of the 24th European Conference on Operational Research (EURO XXIV), Lisbon, Portugal.

3. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization;Duchi;J. Mach. Learn. Res.,2011

4. Ruder, S. (2016). An Overview of Gradient Descent Optimization Algorithms. Comput. Sci. arXiv.

5. ImageNet Classifcation with Deep Convolutional Neural Networks;Krizhevsky;Commun. ACM,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3