β–Ulam–Hyers Stability and Existence of Solutions for Non-Instantaneous Impulsive Fractional Integral Equations

Author:

Du Wei-Shih1ORCID,Fečkan Michal2ORCID,Kostić Marko3ORCID,Velinov Daniel4ORCID

Affiliation:

1. Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan

2. Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynskaá Dolina, 842 48 Bratislava, Slovakia

3. Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, Serbia

4. Department for Mathematics and Informatics, Faculty of Civil Engineering, Ss. Cyril and Methodius University in Skopje, Partizanski Odredi 24, P.O. Box 560, 1000 Skopje, North Macedonia

Abstract

In this paper, we investigate a class of non-instantaneous impulsive fractional integral equations. Utilizing the Banach contraction mapping principle, we establish the existence and uniqueness of solutions for the considered problem. Additionally, employing Schauder’s fixed-point theorem, we demonstrate the existence of solutions within the framework of β-Banach spaces. Moreover, we examine the β–Ulam–Hyers stability of the solutions, providing insights into the stability behavior under small perturbations. An illustrative example is presented to demonstrate the practical applicability and effectiveness of the theoretical results obtained.

Funder

National Science and Technology Council of the Republic of China

Slovak Research and Development Agency

Slovak Grant Agency VEGA

Ministry of Science and Technological Development, Republic of Serbia and Bilateral project between MANU and SANU

Publisher

MDPI AG

Reference48 articles.

1. Bainov, D., and Simeonov, P. (1993). Impulsive Differential Equations: Periodic Solutions and Applications, Wiley.

2. Halanay, A., and Wexler, D. (1971). Qualitative Theory of Impulse Systems, Mir.

3. Integral surfaces for hyperbolic ordinary differential equations with impulse effect;Hristova;COMPEL,1995

4. Lakshmikantham, V., Bainov, D.D., and Simeonov, P.S. (1989). Theory of Impulsive Differential Equations, World Scientific Publishing Co. Pte. Ltd.

5. Impulsive differential equations: Periodic solutions and applications;Li;Automatica,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3