Author:
Wang Zhen,Sun Luhan,Cao Jianxiong
Abstract
This paper aims to numerically study the time-fractional Allen-Cahn equation, where the time-fractional derivative is in the sense of Caputo with order α∈(0,1). Considering the weak singularity of the solution u(x,t) at the starting time, i.e., its first and/or second derivatives with respect to time blowing-up as t→0+ albeit the function itself being right continuous at t=0, two well-known difference formulas, including the nonuniform L1 formula and the nonuniform L2-1σ formula, which are used to approximate the Caputo time-fractional derivative, respectively, and the local discontinuous Galerkin (LDG) method is applied to discretize the spatial derivative. With the help of discrete fractional Gronwall-type inequalities, the stability and optimal error estimates of the fully discrete numerical schemes are demonstrated. Numerical experiments are presented to validate the theoretical results.
Funder
National Natural Science Foundation of China
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献