Forecasting the Active Cases of COVID-19 via a New Stochastic Rayleigh Diffusion Process

Author:

Nafidi Ahmed1ORCID,Chakroune Yassine1,Gutiérrez-Sánchez Ramón2ORCID,Tridane Abdessamad3ORCID

Affiliation:

1. Laboratory of Systems Modelization and Analysis for Decision Support, Department of Mathematics and Computer Science, National School of Applied Science, Hassan First University of Settat, B.P. 218, 26103 Berrechid, Morocco

2. Department of Statistics and Operational Research, Facultad de Ciencias, Compus Fuente Nueva de University of Granada, 18071 Granada, Spain

3. Department of Mathematical Sciences, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates

Abstract

In this work, we study the possibility of using a new non-homogeneous stochastic diffusion process based on the Rayleigh density function to model the evolution of the active cases of COVID-19 in Morocco. First, the main probabilistic characteristics and analytic expression of the proposed process are obtained. Next, the parameters of the model are estimated by the maximum likelihood methodology. This estimation and the subsequent statistical inference are based on the discrete observation of the variable x(t) “number of active cases of COVID-19 in Morocco” by using the data for the period of 28 January to 4 March 2022. Then, we analyze the mean functions by using simulated data for fit and forecast purposes. Finally, we explore the illustration of using this new process to fit and forecast the active cases of COVID-19 data.

Funder

UAEU UPAR

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference27 articles.

1. A stochastic model related to the Richards-type growth curve. Estimation by means of simulated annealing and variable neighborhood search;Appl. Math. Comput.,2015

2. The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process;Nafidi;Appl. Energy,2009

3. The stochastic Weibull diffusion process: Computational aspects and simulation;Nafidi;Appl. Math. Comput.,2019

4. The stochastic modified Lundqvist-Korf diffusion process: Statistical and computational aspects and application to modeling of the CO2 emission in Morocco;Nafidi;Stoch. Environ. Res. Risk Assess.,2022

5. A diffusion model for population growth in random environment;Capocelli;Theor. Popul. Biol.,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3