Quasi-Cauchy Regression Modeling for Fractiles Based on Data Supported in the Unit Interval

Author:

de Oliveira José Sérgio Casé1ORCID,Ospina Raydonal23ORCID,Leiva Víctor4ORCID,Figueroa-Zúñiga Jorge5ORCID,Castro Cecilia6ORCID

Affiliation:

1. Department of Accounting, Universidade Federal da Bahia, Salvador 40110-909, Brazil

2. Department of Statistics, Universidade Federal da Bahia, Salvador 40110-909, Brazil

3. Department of Statistics, CASTLab, Universidade Federal de Pernambuco, Recife 50670-901, Brazil

4. School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile

5. Department of Statistics, Universidad de Concepción, Concepción 4070386, Chile

6. Centre of Mathematics, Universidade do Minho, 4710-057 Braga, Portugal

Abstract

A fractile is a location on a probability density function with the associated surface being a proportion of such a density function. The present study introduces a novel methodological approach to modeling data within the continuous unit interval using fractile or quantile regression. This approach has a unique advantage as it allows for a direct interpretation of the response variable in relation to the explanatory variables. The new approach provides robustness against outliers and permits heteroscedasticity to be modeled, making it a tool for analyzing datasets with diverse characteristics. Importantly, our approach does not require assumptions about the distribution of the response variable, offering increased flexibility and applicability across a variety of scenarios. Furthermore, the approach addresses and mitigates criticisms and limitations inherent to existing methodologies, thereby giving an improved framework for data modeling in the unit interval. We validate the effectiveness of the introduced approach with two empirical applications, which highlight its practical utility and superior performance in real-world data settings.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference36 articles.

1. Johnson, N.L., Kotz, S., and Balakrishnan, N. (1994). Continuous Univariate Distributions, Wiley.

2. Johnson, N.L., Kotz, S., and Balakrishnan, N. (1995). Continuous Univariate Distributions, Wiley.

3. Two new mixture models related to the inverse Gaussian distribution;Kotz;Methodol. Comput. Appl. Probab.,2010

4. The unit-Birnbaum-Saunders distribution with applications;Mazucheli;Chil. J. Stat.,2018

5. Shahin, A.I., and Almotairi, S. (2021). A deep learning BiLSTM encoding-decoding model for COVID-19 pandemic spread forecasting. Fractal Fract., 5.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3