Neural Fractional Order PID Controllers Design for 2-Link Rigid Robot Manipulator

Author:

Mohamed Mohamed Jasim1,Oleiwi Bashra Kadhim1,Abood Layla H.1,Azar Ahmad Taher234ORCID,Hameed Ibrahim A.5

Affiliation:

1. Department of Control and Systems Engineering, University of Technology, Baghdad 19006, Iraq

2. College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

3. Automated Systems and Soft Computing Lab (ASSCL), Prince Sultan University, Riyadh 11586, Saudi Arabia

4. Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt

5. Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Larsgardsvegen 2, 6009 Alesund, Norway

Abstract

The robotic manipulator is considered one of the complex systems that include multi-input, multi-output, non-linearity, and highly coupled. The uncertainty in the parameters and external disturbances have a negative influence on the performance of the system. Therefore, the controllers that will be designed for these systems must be able to deal with these complexities and difficulties. The Proportional, Integral, and Derivative (PID) controller is known to be simple and well robust, while the neural network has a solid ability to map complex functions. In this paper, we propose six control structures by combining the benefits of PID controller with integer and fractional order and the benefits of neural networks to produce hybrid controllers for a 2-Link Rigid Robot Manipulator (2-LRRM) handling with the problem of trajectory tracking. The Gorilla Forces Troops Optimization algorithm (GTO) was used to tune the parameters of the proposed controller schemes to minimize the Integral of Time Square Error (ITSE). In addition, the robustness of the performance of the suggested control systems is tested by altering the initial position, external disturbances and parameters and carried out using MATLAB. The best performance of the proposed controllers was the Neural Network Fractional Order Proportional Integral Derivative Controller (NNFOPID).

Funder

Norwegian University of Science and Technology

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3