A Chaos-Enhanced Fractional-Order Chaotic System with Self-Reproduction Based on a Memcapacitor and Meminductor

Author:

Wang Xuan1,Cao Yinghong1,Li Hongjie1,Li Bo1

Affiliation:

1. School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China

Abstract

Chaotic signals generated by chaotic oscillators based on memory elements are suitable for use in the field of confidential communications because of their very good randomness. But often their maximum Lyapunov exponent is not high enough, so the degree of randomness is not enough. It can be chaos enhanced by transforming it to fractional order using the Caputo differential definition. In this paper, based on the proposed hyperchaotic oscillator, it is extended to a fractional-order form to obtain a chaos-enhanced fractional-order memcapacitor meminductor system, in which several different styles of chaotic and hyperchaotic attractors are found. The dynamical behaviour of the system is studied using bifurcation diagrams, Lyapunov exponent spectrums and Lyapunov dimensions. The multistability of the system is explored in different initial orbits, and the spectral entropy complexity of this system is examined. Finally, a hardware implementation of the memcapacitor meminductor system is given, which demonstrates the effectiveness of the system. This study provides a reference for the study of chaos-enhanced.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3