Certain Novel Fractional Integral Inequalities via Fuzzy Interval Valued Functions

Author:

Vivas-Cortez Miguel1ORCID,Ali Rana Safdar2,Saif Humira2,Jeelani Mdi Begum3ORCID,Rahman Gauhar4ORCID,Elmasry Yasser5ORCID

Affiliation:

1. Escuela de Ciencias Físicas y Matemáticas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Apartado, Quito 17-01-2184, Ecuador

2. Department of Mathematics, University of Lahore, Lahore 54000, Pakistan

3. Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 13314, Saudi Arabia

4. Department of Mathematics and Statistics, Hazara University, Mansehra 21300, Pakistan

5. Department of Mathematics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61466, Saudi Arabia

Abstract

Fuzzy-interval valued functions (FIVFs) are the generalization of interval valued and real valued functions, which have a great contribution to resolve the problems arising in the theory of interval analysis. In this article, we elaborate the convexities and pre-invexities in aspects of FIVFs and investigate the existence of fuzzy fractional integral operators (FFIOs) having a generalized Bessel–Maitland function as their kernel. Using the class of convexities and pre-invexities FIVFs, we prove some Hermite–Hadamard (H-H) and trapezoid-type inequalities by the implementation of FFIOs. Additionally, we obtain other well known inequalities having significant behavior in the field of fuzzy interval analysis.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference41 articles.

1. Monotonicity results for fractional difference operators with discrete exponential kernels;Abdeljawad;Adv. Differ. Equations,2017

2. A mathematical fractional model with nonsingular kernel for thrombin receptor activation in calcium signalling;Agarwal;Math. Methods Appl. Sci.,2019

3. Existence and Uniqueness of Miscible Flow Equation through Porous Media with a Non Singular Fractional Derivative;Agarwal;AIMS Math.,2020

4. Ostrowski type inequalities involving conformable fractional integrals;Khan;J. Inequalities Appl.,2018

5. Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations;Khan;J. Funct. Spaces,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3