Abstract
Interval analysis distinguishes between different types of order relations. As a result of these order relations, convexity and nonconvexity contribute to different kinds of inequalities. Despite this, convex theory is commonly known to rely on Godunova–Levin functions because their properties make it more efficient for determining inequality terms than convex ones. The purpose of this study is to introduce the notion of cr-h-Godunova–Levin functions by using total order relation between two intervals. Considering their properties and widespread use, center-radius order relation appears to be ideally suited for the study of inequalities. In this paper, various types of inequalities are introduced using center-radius order (cr) relation. The cr-order relation enables us firstly to derive some Hermite–Hadamard (H.H) inequalities, and then to present Jensen-type inequality for h-Godunova–Levin interval-valued functions (GL-IVFS) using a Riemann integral operator. This kind of convexity unifies several new and well-known convex functions. Additionally, the study includes useful examples to support its findings. These results confirm that this new concept is useful for addressing a wide range of inequalities. We hope that our results will encourage future research into fractional versions of these inequalities and optimization problems associated with them.
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献