Abstract
The present paper aims to demonstrate the combined impact of memory, selling price, and exhibited stock on a retailer’s decision to maximizing the profit. Exhibited stock endorses demand and low selling prices are also helpful for creating demand. The proposed mathematical model considers demand as a linear function of selling price and displayed inventory. This work utilized fractional calculus to design a memory-based decision-making environment. Following the analytical theory, an algorithm was designed, and by using the Mathematica software, we produced the numerical optimization results. Firstly, the work shows that memory negatively influences the retailer’s goal of maximum profit, which is the most important consequence of the numerical result. Secondly, raising the selling price will maximize the profit though the selling price, and demand will be negatively correlated. Finally, compared to the selling price, the influence of the visible stock is slightly lessened. The theoretical and numerical results ultimately imply that there can be no shortage and memory restrictions, leading to the highest average profit. The recommended approach may be used in retailing scenarios for small start-up businesses when a warehouse is required for continuous supply, but a showroom is not a top concern.
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献