Numerical Solutions of Third-Order Time-Fractional Differential Equations Using Cubic B-Spline Functions

Author:

Abbas MuhammadORCID,Bibi Afreen,Alzaidi Ahmed S. M.,Nazir Tahir,Majeed AbdulORCID,Akram GhazalaORCID

Abstract

Numerous fields, including the physical sciences, social sciences, and earth sciences, benefit greatly from the application of fractional calculus (FC). The fractional-order derivative is developed from the integer-order derivative, and in recent years, real-world modeling has performed better using the fractional-order derivative. Due to the flexibility of B-spline functions and their capability for very accurate estimation of fractional equations, they have been employed as a solution interpolating polynomials for the solution of fractional partial differential equations (FPDEs). In this study, cubic B-spline (CBS) basis functions with new approximations are utilized for numerical solution of third-order fractional differential equation. Initially, the CBS functions and finite difference scheme are applied to discretize the spatial and Caputo time fractional derivatives, respectively. The scheme is convergent numerically and theoretically as well as being unconditionally stable. On a variety of problems, the validity of the proposed technique is assessed, and the numerical results are contrasted with those reported in the literature.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference25 articles.

1. On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity;Diethelm;Sci. Comput. Chem. Eng.,1999

2. From continuous time random walks to the fractional Fokker-Planck equation

3. Transport of ions in physically heterogeneous systems; convection and diffusion in a column filled with alginate gel beads, predicted by a two-region model

4. Fractional Calculus in Fractals and Fractional Calculus in Continuum Mechanics;Gorenflo,1997

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3