New Perturbation–Iteration Algorithm for Nonlinear Heat Transfer of Fractional Order

Author:

Abdel Aal Mohammad1ORCID

Affiliation:

1. Department of Basic Sciences, Faculty of Arts and Educational Sciences, Middle East University, Amman 11831, Jordan

Abstract

Ordinary differential equations have recently been extended to fractional equations that are transformed using fractional differential equations. These fractional equations are believed to have high accuracy and low computational cost compared to ordinary differential equations. For the first time, this paper focuses on extending the nonlinear heat equations to a fractional order in a Caputo order. A new perturbation iteration algorithm (PIA) of the fractional order is applied to solve the nonlinear heat equations. Solving numerical problems that involve fractional differential equations can be challenging due to their inherent complexity and high computational cost. To overcome these challenges, there is a need to develop numerical schemes such as the PIA method. This method can provide approximate solutions to problems that involve classical fractional derivatives. The results obtained from this algorithm are compared with those obtained from the perturbation iteration method (PIM), the variational iteration method (VIM), and the Bezier curve method (BCM). All solutions are tested with numerical simulations. The study found that the new PIA algorithm performs better than the PIM, VIM, and BCM, achieving high accuracy and low computational cost. One significant advantage of this algorithm is that the solutions obtained have established that the fractional values of alpha, specifically α, significantly influencing the accuracy of the outcome and the associated computational cost.

Funder

Middle East University

Publisher

MDPI AG

Reference27 articles.

1. On the perturbation–iteration algorithm for fractional differential equations;Dolapci;J. King Saud Univ. Sci.,2016

2. Review of the new perturbation-iteration method;Pakdemirli;Math. Comput. Appl.,2013

3. New perturbation-iteration solutions for nonlinear heat transfer equations;Aksoy;Int. J. Numer. Methods Heat Fluid Flow,2012

4. The history of notations of the calculus;Cajori;Ann. Math.,1923

5. Leibniz, G.W., and Heer, F. (1958). Gottfried Wilhelm Leibniz, Fischer Bücherei.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3