Fractional-Order Modeling and Nonlinear Dynamic Analysis of Forward Converter

Author:

Wang Xiaogang1ORCID,Zhang Zetian1ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China

Abstract

To accurately investigate the nonlinear dynamic characteristics of a forward converter, a fractional-order state-space averaged model of a forward converter in continuous conduction mode (CCM) is established based on the fractional calculus theory. And nonlinear dynamical bifurcation maps which use PI controller parameters and a reference current as bifurcation parameters are obtained. The nonlinear dynamic behavior is analyzed and compared with that of an integral-order forward converter. The results show that under certain operating conditions, the fractional-order forward converter exhibits bifurcations characterized by low-frequency oscillations and period-doubling as certain circuit and control parameters change. Under the same circuit conditions, there is a difference in the stable parameter region between the fractional and integral-order models of the forward converter. The stable zone of the fractional-order forward converter is larger than that of the integral-order one. Therefore, the circuit struggles to enter states of bifurcation and chaos. The stability domain for low-frequency oscillations and period-doubling bifurcations can be accurately predicted by using a small signal model and a predictive correction model of the fractional-order forward converter, respectively. Finally, by performing circuit simulations and hardware-in-the-loop experiments, the rationality and correctness of the theoretical analysis are verified.

Funder

Guangdong Basic and Applied Basic Research Foundation

Guangzhou Science and Technology Project

Publisher

MDPI AG

Reference34 articles.

1. A review of definitions for fractional derivatives and integral;Math. Probl. Eng.,2014

2. A note on the fractional-order Chua’s system;Chaos Solitons Fractals,2008

3. Capacitor theory;Westerlund;IEEE Trans. Dielectr. Electr. Insul.,1994

4. Dead matter has memory!;Westerlund;Phys. Scr.,1991

5. Development of fractional order capacitors based on electrolyte processes;Jesus;Nonlinear Dyn.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3