Rational Approximations for the Oscillatory Two-Parameter Mittag–Leffler Function

Author:

Honain Aljowhara H.1ORCID,Furati Khaled M.1ORCID,Sarumi Ibrahim O.1,Khaliq Abdul Q. M.2ORCID

Affiliation:

1. Department of Mathematics, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

2. Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA

Abstract

The two-parameter Mittag–Leffler function Eα,β is of fundamental importance in fractional calculus, and it appears frequently in the solutions of fractional differential and integral equations. However, the expense of calculating this function often prompts efforts to devise accurate approximations that are more cost-effective. When α>1, the monotonicity property is largely lost, resulting in the emergence of roots and oscillations. As a result, current rational approximants constructed mainly for α∈(0,1) often fail to capture this oscillatory behavior. In this paper, we develop computationally efficient rational approximants for Eα,β(−t), t≥0, with α∈(1,2). This process involves decomposing the Mittag–Leffler function with real roots into a weighted root-free Mittag–Leffler function and a polynomial. This provides approximants valid over extended intervals. These approximants are then extended to the matrix Mittag–Leffler function, and different implementation strategies are discussed, including using partial fraction decomposition. Numerical experiments are conducted to illustrate the performance of the proposed approximants.

Publisher

MDPI AG

Reference32 articles.

1. Kilbas, A., Srivastava, H., and Trujullo, J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier.

2. Gorenflo, R., Kilbas, A.A., Mainardi, F., and Rogosin, S.V. (2014). Mittag-Leffler Functions. Related Topics and Applications, Springer.

3. Gorenflo, R., and Mainardi, F. (1996). Fractional Oscillations and Mittag-Leffler Functions, Citeseer.

4. Fractional relaxation-oscillation and fractional diffusion-wave phenomena;Mainardi;Chaos Solitons Fractals,1996

5. Dynamics of the fractional oscillator;Achar;Phys. A Stat. Mech. Its Appl.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3