Affiliation:
1. Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, USA
Abstract
In this article, we examine variational inequalities of the form ⟨A(u),v−u⟩+⟨F(u),v−u⟩≥0,∀v∈Ku∈K,, where A is a generalized fractional Φ-Laplace operator, K is a closed convex set in a fractional Musielak–Orlicz–Sobolev space, and F is a multivalued integral operator. We consider a functional analytic framework for the above problem, including conditions on the multivalued lower order term F such that the problem can be properly formulated in a fractional Musielak–Orlicz–Sobolev space, and the involved mappings have certain useful monotonicity–continuity properties. Furthermore, we investigate the existence of solutions contingent upon certain coercivity conditions.
Reference32 articles.
1. Problemi elastostatici con vincoli unilaterali: Il problema di signorini con ambigue condizionial contorno;Fichera;Mem. Accad. Naz. Lincei Ser. VII,1964
2. Formes bilinéaires coercitives sur les ensembles Convexes;Stampacchia;Comptes Rendus Hebd. Seances Acad. Sci.,1964
3. Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus;Stampacchia;Ann. Inst. Fourier,1965
4. Variational inequalities;Lions;Comm. Pure Appl. Math.,1967
5. Naniewicz, Z., and Panagiotopoulos, P.D. (1995). Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker.