Abstract
Nowadays, more and more consumers consider environmentally friendly products in their purchasing decisions. Companies need to adapt to these changes while paying attention to standard business systems such as payment terms. The purpose of this study is to optimize the entire profit function of a retailer and to find the optimal selling price and replenishment cycle when the demand rate depends on the price and carbon emission reduction level. This study investigates an economic order quantity model that has a demand function with a positive impact of carbon emission reduction besides the selling price. In this model, the supplier requests payment in advance on the purchased cost while offering a discount according to the payment in the advanced decision. Three different types of payment-in-advance cases are applied: (1) payment in advance with equal numbers of instalments, (2) payment in advance with a single instalment, and (3) the absence of payment in advance. Numerical examples and sensitivity analysis illustrate the proposed model. Here, the total profit increases for all three cases with higher values of carbon emission reduction level. Further, the study finds that the profit becomes maximum for case 2, whereas the selling price and cycle length become minimum. This study considers the sustainable inventory model with payment-in-advance settings when the demand rate depends on the price and carbon emission reduction level. From the literature review, no researcher has undergone this kind of study in the authors’ knowledge.
Funder
Research Supporting Project, King Saud University
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献