Sensitivity of Fractional-Order Recurrent Neural Network with Encoded Physics-Informed Battery Knowledge

Author:

Wang YananORCID,Han Xuebing,Lu Languang,Chen YangquanORCID,Ouyang Minggao

Abstract

In the field of state estimation for the lithium-ion battery (LIB), model-based methods (white box) have been developed to explain battery mechanism and data-driven methods (black box) have been designed to learn battery statistics. Both white box methods and black box methods have drawn much attention recently. As the combination of white box and black box, physics-informed machine learning has been investigated by embedding physic laws. For LIB state estimation, this work proposes a fractional-order recurrent neural network (FORNN) encoded with physics-informed battery knowledge. Three aspects of FORNN can be improved by learning certain physics-informed knowledge. Firstly, the fractional-order state feedback is achieved by introducing a fractional-order derivative in a forward propagation process. Secondly, the fractional-order constraint is constructed by a voltage partial derivative equation (PDE) deduced from the battery fractional-order model (FOM). Thirdly, both the fractional-order gradient descent (FOGD) and fractional-order gradient descent with momentum (FOGDm) methods are proposed by introducing a fractional-order gradient in the backpropagation process. For the proposed FORNN, the sensitivity of the added fractional-order parameters are analyzed by experiments under the federal urban driving schedule (FUDS) operation conditions. The experiment results demonstrate that a certain range of every fractional-order parameter can achieve better convergence speed and higher estimation accuracy. On the basis of the sensitivity analysis, the fractional-order parameter tuning rules have been concluded and listed in the discussion part to provide useful references to the parameter tuning of the proposed algorithm.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3