Evolution of Morphology, Fractal Dimensions, and Structure of (Titanium) Aluminosilicate Gel during Synthesis of Zeolites Y and Ti-Y

Author:

Petcu Gabriela,Dobrescu GianinaORCID,Atkinson Irina,Ciobanu MadalinaORCID,Blin Jean-LucORCID,Parvulescu Viorica

Abstract

Zeolite Y and Ti-containing zeolite Y (1%, 2% and 5% TiO2) were synthesized by a hydrothermal seed-assisted method. In order to evidence the evolution of morphology, structure, and fractal dimensions during the zeolitization process at certain time intervals, a small volume from the reaction medium was isolated and frozen by lyophilization. The obtained samples were characterized by scanning electron microscopy (SEM), wide-angle X-ray diffraction (XRD), and small-angle X-ray scattering (SAXS). The fractal dimension values of the isolated samples, calculated from SAXS data, evidenced a transition from small particles with a smooth surface (2.021) to compact structures represented by zeolite crystallites with rough surfaces (2.498) and specific organization for zeolite Y. The formation of new structures during hydrothermal treatment, the increase in crystallite size and roughness due to the continuous growth were suggested by variation of fractal dimensions values, SEM microscopy images and X-ray diffractograms. The incorporation of titanium in low concentration into the zeolite Y framework led to the obtaining of low fractal dimensions of 2.034–2.275 (smooth surfaces and compact structures). On the other hand, higher titanium concentration (2%) led to an increase in fractal dimensions indicating structures with rougher surfaces and well-defined self-similarity properties. A mechanism for zeolite synthesis was proposed by correlation of the results obtained through morphological, structural, and fractal analysis.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference34 articles.

1. Mandelbrot, B.B. (1977). Fractals: Form, Chance and Dimension, W. H. Freeman.

2. Mandelbrot, B.B. (1982). The Fractal Geometry of Nature, W. H. Freeman.

3. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon;Phys. Rev. Lett.,1981

4. Pietronero, L., and Tosatti, E. (1986). Fractals in Physics, Elsevier Science Publisher.

5. Fractal Reaction Kinetics;Science,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3