Pore Microstructure and Multifractal Characterization of Lacustrine Oil-Prone Shale Using High-Resolution SEM: A Case Sample from Natural Qingshankou Shale

Author:

Tian Shansi,Guo Yuanling,Dong ZhentaoORCID,Li Zhaolong

Abstract

Pore structure is one of the important parameters for evaluating reservoirs, critical in controlling the storage capacity and transportation properties of hydrocarbons. The conventional pore characterization method cannot fully reflect the pore network morphology. The edge-threshold automatic processing method is applied to extract and quantify pore structures in shale scanning electron microscope (SEM) images. In this manuscript, a natural lacustrine oil-prone shale in the Qingshankou Formation of Songliao Basin is used as the research object. Based on FE-SEM, a high-resolution cross-section of shale was obtained to analyze the microstructure of pores and characterize the heterogeneity of pores by multifractal theory. The stringent representative elementary area (REA) of the SEM cross-section was determined to be 35 × 35. Four pore types were found and analyzed in the stringent REA: organic pores, organic cracks, inorganic pores, inorganic cracks. The results showed that inorganic pores and cracks were the main pore types and accounted for 87.8% of the total pore area, and organic cracks were of the least importance in the Qingshankou shale. Inorganic pores were characterized as the simplest pore morphologies, with the largest average MinFeret diameter, and the least heterogeneity. Moreover, the inorganic cracks had a long extension distance and stronger homogeneity, which could effectively connect the inorganic pores. Organic pores were found to be the most complex for pore structure, with the least average MinFeret diameter, but the largest heterogeneity. In addition, the extension distance of the organic cracks was short and could not effectively connect the organic pore. We concluded that inorganic pores and cracks are a key factor in the storage and seepage capacity of the Qingshankou shale. Organic pores and cracks provide limited storage space.

Funder

China Postdoctoral Science Foundation

Superior Youth Foundation of Heilongjiang Province

Project of Daqing Guiding Science and Technology Plan

Science and Technology Project of Heilongjiang Province

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3