A Fractal Approach to Nonlinear Topographical Features of Healthy and Keratoconus Corneas Pre- and Post-Operation of Intracorneal Implants

Author:

Bahramizadeh-Sajadi Shima,Katoozian Hamid Reza,Mehrabbeik MahtabORCID,Baradaran-Rafii Alireza,Jadidi Khosrow,Jafari SajadORCID

Abstract

Fractal dimension (FD) together with advances in imaging technologies has provided an increasing application of digital images to interpret biological phenomena. In ophthalmology, topography-based images are increasingly used in common practices of clinical settings. They provide detailed information about corneal surfaces. Few-micron alterations of the corneal geometry to the elevation and curvature cause a highly multifocal surface, change the corneal optical power up to several diopters, and therefore adversely affect the individual’s vision. Keratoconus (KCN) is a corneal disease characterized by a local alteration of the corneal anatomical and mechanical features. The formation of cone-shaped regions accompanied by thinning and weakening of the cornea are the major manifestations of KCN. The implantation of tiny arc-like polymeric sections, known as intracorneal implants, is considered to be effective in restoring the corneal curvature. This study investigated the FD nature of healthy corneas (n = 7) and compared it to the corresponding values before and after intracorneal implant surgery in KCN patients (n = 7). The generalized Hurst exponent, Higuchi, and Katz FDs were computed for topography-based parameters of corneal surfaces: front elevation (ELE-front), back elevation (ELE-back), and corneal curvature (CURV). The Katz FD showed better discriminating ability for the diseased group. It could reveal a significant difference between the healthy corneas and both pre- and post-implantation topographies (p < 0.001). Moreover, the Katz dimension varied between the topographic features of KCN patients before and after the treatment (p < 0.036). We propose to describe the curvature feature of corneal topography as a “strange attractor” with a self-similar (i.e., fractal) structure according to the Katz algorithm.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3