Optimal PID Controllers for AVR Systems Using Hybrid Simulated Annealing and Gorilla Troops Optimization

Author:

Alghamdi SultanORCID,Sindi Hatem F.ORCID,Rawa MuhyaddinORCID,Alhussainy Abdullah A.,Calasan MartinORCID,Micev MihailoORCID,Ali Ziad M.ORCID,Abdel Aleem Shady H. E.ORCID

Abstract

In the literature, all investigations dealing with regulator design in the AVR loop observe the AVR system as a single input single output (SISO) system, where the input is the generator reference voltage, while the output is the generator voltage. Besides, the regulator parameters are determined by analyzing the terminal generator voltage response for a step change from zero to the rated value of the generator voltage reference. Unlike literature approaches, in this study, tuning of the AVR controllers is conducted while modeling the AVR system as a double input single output (DISO) system, where the inputs are the setpoint of the generator voltage and the step disturbance on the excitation voltage, while the output is the generator voltage. The transfer functions of the generator voltage dependence on the generator voltage reference value and the excitation voltage change were derived in the developed DISO-AVR model. A novel objective function for estimating DISO-AVR regulator parameters is proposed. Also, a novel metaheuristic algorithm named hybrid simulated annealing and gorilla troops optimization is employed to solve the optimization problem. Many literature approaches are compared using different regulator structures and practical limitations. Furthermore, the experimental results of 120 MVA synchronous generators in HPP Piva (Montenegro) are presented to show the drawbacks of the literature approaches that observe generator setpoint voltage change from zero to the rated value. Based on the presented results, the proposed procedure is efficient and strongly applicable in practice.

Funder

Khalifa University

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference51 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3