Abstract
In recent years, the irregular cracks formed during the damage evolution of civil engineering materials have been able to be quantitatively described by using fractals. In this study, the fractal characteristics of the desiccation cracking of soil were investigated under different substrate contact and permeability conditions through a natural drying test in the laboratory. Three kinds of base contact conditions of soil, namely, grease, geomembrane, and geotextile, were designed, and two samples for each contact condition, including one parallel sample, were used. The continuous drying experiment was carried out at a constant ambient temperature. The crack morphology under different spacings was analyzed quantitatively using digital image processing technology. The fractal dimensions of three soil substrate contact conditions (grease, geomembranes, and geotextiles) were between 1.238 and 1.93. When the crack network on the soil surface stops developing, the fractal dimensions under the three experimental conditions are 1.88, 1.93 and 1.79, respectively. In the final state of crack development, the crack intensity factor of the sample with grease at the bottom is 2.99% and 4.02% higher than that of the sample with geomembranes and geotextiles at the bottom, respectively. The residual water contents of the samples with bottom contact conditions of grease, geomembrane, and geotextile increase successively, which are 3.12%, 5.76% and 9.71%, respectively. The effects of interface friction and permeability on soil cracking behavior are analyzed, and the evolution characteristics and formation mechanisms of cracks in soil are revealed.
Funder
Natural Science Foundation of Henan
National Natural Science Foundation of China
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献