Consensus of T-S Fuzzy Fractional-Order, Singular Perturbation, Multi-Agent Systems

Author:

Wang Xiyi1,Zhang Xuefeng1ORCID,Pedrycz Witold2ORCID,Yang Shuang-Hua3ORCID,Boutat Driss4ORCID

Affiliation:

1. College of Sciences, Northeastern University, Shenyang 110819, China

2. Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada

3. Department of Computer Science, University of Reading, Reading RG6 6UR, UK

4. INSA Centre Val de Loire, Université d’Orléans, PRISME EA 4229, CEDEX, 18022 Bourges, France

Abstract

Due to system complexity, research on fuzzy fractional-order, singular perturbation, multi-agent systems (FOSPMASs) remains limited in control theory. This article focuses on the leader-following consensus of fuzzy FOSPMASs with orders in the range of 0, 2. By employing the T-S fuzzy modeling approach, a fuzzy FOSPMAS is constructed. In order to achieve the consensus of a FOSPMAS with multiple time-scale characteristics, a fuzzy observer-based controller is designed, and the error system corresponding to each agent is derived. Through a series of equivalent transformations, the error system is decomposed into fuzzy singular fractional-order systems (SFOSs). The consensus conditions of the fuzzy FOSPMASs are obtained based on linear matrix inequalities (LMIs) without an equality constraint. The theorems provide a way to tackle the uncertainty and nonlinearity in FOSPMASs with orders in the range of 0, 2. Finally, the effectiveness of the theorems is verified through an RLC circuit model and a numerical example.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

National Key Research and Development Program Topic

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3