Leveraging the Performance of Integrated Power Systems with Wind Uncertainty Using Fractional Computing-Based Hybrid Method

Author:

Albalawi Hani12,Muhammad Yasir3,Wadood Abdul12,Khan Babar Sattar3,Zainab Syeda Taleeha3,Alatwi Aadel Mohammed12ORCID

Affiliation:

1. Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk 47913, Saudi Arabia

2. Electrical Engineering Department, Faculty of Engineering, University of Tabuk, Tabuk 47913, Saudi Arabia

3. Electrical Engineering Department, Comsat University Islamabad Attock Campus, Attock 43600, Pakistan

Abstract

Reactive power dispatch (RPD) in electric power systems, integrated with renewable energy sources, is gaining popularity among power engineers because of its vital importance in the planning, designing, and operation of advanced power systems. The goal of RPD is to upgrade the power system performance by minimizing the transmission line losses, enhancing voltage profiles, and reducing the total operating costs by tuning the decision variables such as transformer tap setting, generator’s terminal voltages, and capacitor size. But the complex, non-linear, and dynamic characteristics of the power networks, as well as the presence of power demand uncertainties and non-stationary behavior of wind generation, pose a challenging problem that cannot be solved efficiently with traditional numerical techniques. In this study, a new fractional computing strategy, namely, fractional hybrid particle swarm optimization (FHPSO), is proposed to handle RPD issues in electric networks integrated with wind power plants (WPPs) while incorporating the power demand uncertainties. To improve the convergence characteristics of the Particle Swarm Optimization and Gravitational Search Algorithm (PSOGSA), the proposed FHPSO incorporates the concepts of Shannon entropy inside the mathematical model of traditional PSOGSA. Extensive experimentation validates FHPSO effectiveness by computing the best value of objective functions, namely, voltage deviation index and line loss minimization in standard power systems. The proposed FHPSO shows an improvement in percentage of 61.62%, 85.44%, 86.51%, 93.15%, 84.37%, 67.31%, 61.64%, 61.13%, 8.44%, and 1.899%, respectively, over ALC_PSO, FAHLCPSO, OGSA, ABC, SGA, CKHA, NGBWCA, KHA, PSOGSA, and FPSOGSA in case of traditional optimal reactive power dispatch(ORPD) for IEEE 30 bus system. Furthermore, the stability, robustness, and precision of the designed FHPSO are determined using statistical interpretations such as cumulative distribution function graphs, quantile-quantile plots, boxplot illustrations, and histograms.

Funder

Research, Development, and Innovation Authority (RDIA)—Kingdom of Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3