Approximate Solutions of Fractional Differential Equations Using Optimal q-Homotopy Analysis Method: A Case Study of Abel Differential Equations

Author:

Şengül Süleyman1ORCID,Bekiryazici Zafer1ORCID,Merdan Mehmet2ORCID

Affiliation:

1. Department of Mathematics, Recep Tayyip Erdogan University, Rize 53100, Turkey

2. Department of Mathematical Engineering, Gümüşhane University, Gümüşhane 29100, Turkey

Abstract

In this study, the optimal q-Homotopy Analysis Method (optimal q-HAM) has been used to investigate fractional Abel differential equations. This article is designed as a case study, where several forms of Abel equations, containing Bernoulli and Riccati equations, are given with ordinary derivatives and fractional derivatives in the Caputo sense to present the application of the method. The optimal q-HAM is an improved version of the Homotopy Analysis Method (HAM) and its modification q-HAM and focuses on finding the optimal value of the convergence parameters for a better approximation. Numerical applications are given where optimal values of the convergence control parameters are found. Additionally, the correspondence of the approximate solutions obtained for these optimal values and the exact or numerical solutions are shown with figures and tables. The results show that the optimal q-HAM improves the convergence of the approximate solutions obtained with the q-HAM. Approximate solutions obtained with the fractional Differential Transform Method, q-HAM and predictor–corrector method are also used to highlight the superiority of the optimal q-HAM. Analysis of the results from various methods points out that optimal q-HAM is a strong tool for the analysis of the approximate analytical solution in Abel-type differential equations. This approach can be used to analyze other fractional differential equations arising in mathematical investigations.

Funder

Recep Tayyip Erdoğan University Development Foundation

Publisher

MDPI AG

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3