Segmentation of Concrete Cracks by Using Fractal Dimension and UHK-Net

Author:

An Qing,Chen Xijiang,Wang Haojun,Yang Huamei,Yang Yuanjun,Huang Wei,Wang LeiORCID

Abstract

Concrete wall surfaces are prone to cracking for a long time, which affects the stability of concrete structures and may even lead to collapse accidents. In view of this, it is necessary to recognize and distinguish the concrete cracks. Then, the stability of concrete will be known. In this paper, we propose a novel approach by fusing fractal dimension and UHK-Net deep learning network to conduct the semantic recognition of concrete cracks. We first use the local fractal dimensions to study the concrete cracking and roughly determine the location of concrete crack. Then, we use the U-Net Haar-like (UHK-Net) network to construct the crack segmentation network. Ultimately, the different types of concrete crack images are used to verify the advantage of the proposed method by comparing with FCN, U-Net, YOLO v5 network. Results show that the proposed method can not only characterize the dark crack images, but also distinguish small and fine crack images. The pixel accuracy (PA), mean pixel accuracy (MPA), and mean intersection over union (MIoU) of crack segmentation determined by the proposed method are all greater than 90%.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3