Effectiveness of Newtonian Heating on Magneto-Free Convective Flow of Polar Nanofluid across a Solid Sphere

Author:

Nabwey Hossam A.ORCID,Rashad Ahmed M.ORCID,EL-Hakiem Amal M. A.,Alshber Sumayyah I.

Abstract

This paper explains the free convective flowing of micropolar nanofluid through a solid sphere with Newtonian heating and the magnetic field influence. Sets of partial differential equations are converted by using convenient transformations to ordinary differential equations. The system of similar and nonsimilar equations is solved numerically using the Runge–Kutta–Fehlberg method (RKF45) using MAPLE software (version 20).The numerical results are validated by comparison with previously published works, and excellent agreement is found between them. The influence of the magnetic field parameter, solid volume fraction, and micropolar parameter on velocity, temperature, and angular velocity profiles are shown graphically. In addition, both the skin friction coefficient and Nusselt number are also discussed. It is found that the skin friction increases with an increase in the solid volume fraction of both nanoparticles and Newtonian heating and micropolar parameters. In addition, the magnetic field reduces both the skin friction and the Nusselt number. Moreover, the solid volume fraction and Newtonian heating parameter enhance the Nusselt number.

Funder

Deputyship for Research &Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference26 articles.

1. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles;Masuda;NetsuBussei,1993

2. Convective Transport in Nanofluids

3. Enhancing Thermal Conductivity of Fluids with Nanoparticles;Choi,1995

4. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3