Abstract
This study focuses on numerically addressing the time fractional Cattaneo equation involving Caputo–Fabrizio derivative using spline-based numerical techniques. The splines used are the cubic B-splines, trigonometric cubic B-splines and extended cubic B-splines. The space derivative is approximated using B-splines basis functions, Caputo–Fabrizio derivative is discretized, using a finite difference approach. The techniques are also put through a stability analysis to verify that the errors do not pile up. The proposed scheme’s convergence analysis is also explored. The key advantage of the schemes is that the approximation solution is produced as a smooth piecewise continuous function, allowing us to approximate a solution at any place in the domain of interest. A numerical study is performed using various splines, and the outcomes are compared to demonstrate the efficiency of the proposed schemes.
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献