Dynamic Feedforward-Based Fractional Order Impedance Control for Robot Manipulator

Author:

Ding Yixiao,Luo YingORCID,Chen YangquanORCID

Abstract

Impedance control is widely applied in contact force control for robot manipulators. The traditional impedance model is linear, and has limitations in describing the actual impedance force. In addition, time-varying and dynamic coupling characteristics pose critical challenges to high-speed and high-precision impedance control. In this paper, a fractional order impedance controller (FOIC) is proposed for industrial robot manipulator control and a systematic FOIC parameters tuning strategy based on frequency-domain specifications is presented. In order to improve performance under dynamic disturbances, a dynamic feedforward-based fractional order impedance controller (DFF-FOIC) is further developed. The robot manipulator dynamics are investigated and the effectiveness of the DFF-FOIC is illustrated by simulation. Then, the DFF-FOIC is applied on a physical robot manipulator prototype. Our step force tracking test results show that the proposed FOIC has better control performance than an integer order impedance controller (IOIC), achieving a better step response with lower overshoot, less settling time, and smaller integral time absolute error (ITAE) than the IOIC under fair comparison conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3