Author:
Shao Yihao,Yang Huai,Guo Xiuya,Wang Huili,Zhu Limei,Ma Xuan,Chen Ruijuan,Ruan Shufen,Ren Lulu,Zheng Qian
Abstract
In the study of heat transfer in tree-like branching network, neither the heat convection caused by fluid flow in the tree-like branching network nor the asymmetric structure of the tree-like branching network can be ignored. In this work, we assume the porous media is embedded with a tree-like branching network that are characterized by damaged pipes. We investigated the effects of surface roughness on heat conduction and heat convection in the porous media embedded with the damaged tree-like branching network based on the fractal features of tree-like branching networks and the basic theory of thermodynamics. The proposed model for thermal conductivity can be expressed as a function of micro-structural parameters of the composite, such as the relative roughness, the ratio of thermal conductivity of the wall to that of the fluid in the micro-channel, the diameter ratio, the length ratio, the branching level, the number of damaged channels, the total number of branching levels, and the main tube porosity of the porous media. The effects of the micro-structural parameters of the model on its effective thermal conductivity have been analyzed in detail. It is believed that the joint expression of heat conduction and heat convection could enrich and develop the physical study of heat transport in porous media.
Funder
National Natural Science Foundation of China
Knowledge Innovation Program of Wuhan-Basic Research
Natural Science Foundation of Hubei Province
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献