Estimation Method of Ideal Fractal Parameters for Multi-Scale Measurement of Polished Surface Topography

Author:

Li Hongju,Liu Ying,Wang YuechangORCID,Liao Haoran

Abstract

A surface topography characterization parameter system based on fractal parameters has been established, and several estimation methods for these fractal parameters have been suggested accordingly. Since scale dependence exists in these conventional methods, it is necessary to find an estimation method for characterization parameters with uniqueness. An estimation method for ideal fractal parameters for multi-scale measurement of polished surface topography is proposed in this study. Polished surfaces of two materials, WC-Ni and 9Cr18Mo, are measured under multi-scale for frequency component analysis. This study proposes an estimation method for ideal fractal parameters based on a modified determination method for the scale-free region and the decomposition of frequency components into three classifications. The reasonable results verify the existence of ideal fractal parameters: for the WC-Ni surface, ideal fractal dimension D = 1.3 and scale coefficient G = 2.23×1020 μm; for the 9Cr18Mo surface, ideal fractal dimension D = 1.2 and scale coefficient G = 3.33×1033 μm. Additionally, it is revealed that the scale-dependent components conform to the same regulation on the same instrument by comparing the results of two materials. The conclusions of this study are expected to support tribology research and mechanical engineering related to surface topography.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3