Applications of Prabhakar-like Fractional Derivative for the Solution of Viscous Type Fluid with Newtonian Heating Effect

Author:

Raza Ali,Khan UmairORCID,Zaib Aurang,Mahmoud Emad E.ORCID,Weera WajareeORCID,Yahia Ibrahim S.ORCID,Galal Ahmed M.ORCID

Abstract

This article examines a natural convection viscous unsteady fluid flowing on an oscillating infinite inclined plate. The Newtonian heating effect, slip effect on the boundary wall, and constant mass diffusion conditions are also considered. In order to account for extended memory effects, the semi-analytical solution of transformed governed partial differential equations is attained with the help of a recent and more efficient fractional definition known as Prabhakar, like a thermal fractional derivative with Mittag-Leffler function. Fourier and Fick’s laws are also considered in the thermal profile and concentration field solution. The essentials’ preliminaries, fractional model, and execution approach are expansively addressed. The physical impacts of different parameters on all governed equations are plotted and compared graphically. Additionally, the heat transfer rate, mass diffusion rate, and skin friction are examined with different numerical techniques. Consequently, it is noted that the variation in fractional parameters results in decaying behavior for both thermal and momentum profiles while increasing with the passage of time. Furthermore, in comparing both numerical schemes and existing literature, the overlapping of both curves validates the attained solution of all governed equations.

Funder

King Khalid University

Deputyship for Research & Innovation, Ministry of Education

Taif University

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3