3D Boundary Element Model for Ultrasonic Wave Propagation Fractional Order Boundary Value Problems of Functionally Graded Anisotropic Fiber-Reinforced Plates

Author:

Fahmy Mohamed Abdelsabour

Abstract

This paper proposes a three–dimensional (3D) local boundary element model based on meshless moving least squares (MLS) method for ultrasonic wave propagation fractional order boundary value problems of functionally graded anisotropic (FGA) fiber-reinforced plates. The problem domain is split into several circular sub-domains. The nodal points are randomly distributed across the examined region. Each node is the focal point of a circular sub-domain that encircles it. The Laplace-transform approach is used to solve dynamic issues. In the local weak form of the governing equations for the converted quantities, a unit test function is utilized. The Gauss divergence theorem to the weak-form is used to produce local boundary-domain integral equations. A meshless approximation is achieved using the MLS method. To find time-dependent solutions, an inverse Laplace-transform approach is used. The effects of the fractional order parameter, functionally graded material, anisotropy, and the time characteristic of the laser pulse are investigated. The proposed method’s validity and performance are demonstrated for a two-dimensional problem with excellent agreement with the finite element method.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference38 articles.

1. Fractional Differential Equations;Podlubny,1999

2. Theory and Applications of Fractional Differential Equations;Kilbas,2006

3. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering,2007

4. Which differintegration?

5. Surfaces generated by moving least squares methods

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3