Quantization for Infinite Affine Transformations

Author:

Çömez Doğan,Roychowdhury Mrinal Kanti

Abstract

Quantization for a probability distribution refers to the idea of estimating a given probability by a discrete probability supported by a finite set. In this article, we consider a probability distribution generated by an infinite system of affine transformations {Sij} on R2 with associated probabilities {pij} such that pij>0 for all i,j∈N and ∑i,j=1∞pij=1. For such a probability measure P, the optimal sets of n-means and the nth quantization error are calculated for every natural number n. It is shown that the distribution of such a probability measure is the same as that of the direct product of the Cantor distribution. In addition, it is proved that the quantization dimension D(P) exists and is finite; whereas, the D(P)-dimensional quantization coefficient does not exist, and the D(P)-dimensional lower and the upper quantization coefficients lie in the closed interval [112,54].

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3