Long-Term Bifurcation and Stochastic Optimal Control of a Triple-Delayed Ebola Virus Model with Vaccination and Quarantine Strategies

Author:

Din AnwarudORCID,Khan AsadORCID,Sabbar YassineORCID

Abstract

Despite its high mortality rate of approximately 90%, the Ebola virus disease (EVD) has not received enough attention in terms of in-depth research. This illness has been responsible for over 40 years of epidemics throughout Central Africa. However, during 2014–2015, the Ebola-driven epidemic in West Africa became, and remains, the deadliest to date. Thus, Ebola has been declared one of the major public health issues. This paper aims at exploring the effects of external fluctuations on the prevalence of the Ebola virus. We begin by proposing a sophisticated biological system that takes into account vaccination and quarantine strategies as well as the effect of time lags. Due to some external perturbations, we extend our model to the probabilistic formulation with white noises. The perturbed model takes the form of a system of stochastic differential equations. Based on some non-standard analytical techniques, we demonstrate two main approach properties: intensity and elimination of Ebola virus. To better understand the impact of applied strategies, we deal with the stochastic control optimization approach by using some advanced theories. All of this theoretical arsenal has been numerically confirmed by employing some real statistical data of Ebola virus. Finally, we mention that this work could be a rich basis for further investigations aimed at understanding the complexity of Ebola virus propagation at pathophysiological and mathematics levels.

Funder

Guangzhou University

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference71 articles.

1. Ebola virus disease in West Africa—The first 9 months;Christopher;N. Engl. J. Med.,2015

2. Overview, Control Strategies, and Lessons Learned in the CDC Response to the 2014–2016 Ebola Epidemic

3. The Centers for Disease Control and Prevention;Ebola (Ebola Virus Disease)

4. Understanding the dynamics of Ebola epidemics

5. Stability characterization of a fractional-order viral system with the non-cytolytic immune assumption

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3