Optimal Frequency Control of Multi-Area Hybrid Power System Using New Cascaded TID-PIλDμN Controller Incorporating Electric Vehicles

Author:

Hassan Amira,Aly MokhtarORCID,Elmelegi Ahmed,Nasrat Loai,Watanabe MasayukiORCID,Mohamed Emad A.ORCID

Abstract

Modern structures of electrical power systems are expected to have more domination of renewable energy sources. However, renewable energy-based generation systems suffer from their lack of or reduced rotating masses, which is the main source of power system inertia. Therefore, the frequency of modern power systems represents an important indicator of their proper and safe operation. In addition, the uncertainties and randomness of the renewable energy sources and the load variations can result in frequency undulation problems. In this context, this paper presents an improved cascaded fractional order-based frequency regulation controller for a two-area interconnected power system. The proposed controller uses the cascade structure of the tilt integral derivative (TID) with the fractional order proportional integral derivative with a filter (FOPIDN or PIλDμN) controller (namely the cascaded TID-FOPIDN or TID-PIλDμN controller). Moreover, an optimized TID control method is presented for the electric vehicles (EVs) to maximize their benefits and contribution to the frequency regulation of power systems. The recent widely employed marine predators optimization algorithm (MPA) is utilized to design the new proposed controllers. The proposed controller and design method are tested and validated at various load and renewable source variations, as is their robustness against parameter uncertainties of power systems. Performance comparisons of the proposed controller with featured frequency regulation controllers in the literature are provided to verify the superiority of the new proposed controller. The obtained results confirm the stable operation and the frequency regulation performance of the new proposed controller with optimized controller parameters and without the need for complex design methods.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3