Abstract
An iterated function system that defines a fractal interpolation function, where ordinate scaling is replaced by a nonlinear contraction, is investigated here. In such a manner, fractal interpolation functions associated with Matkowski contractions for finite as well as infinite (countable) sets of data are obtained. Furthermore, we construct an extension of the concept of α-fractal interpolation functions, herein called R-fractal interpolation functions, related to a finite as well as to a countable iterated function system and provide approximation properties of the R-fractal functions. Moreover, we obtain smooth R-fractal interpolation functions and provide results that ensure the existence of differentiable R-fractal interpolation functions both for the finite and the infinite (countable) cases.
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献