Analysis and Applications of Some New Fractional Integral Inequalities

Author:

Ramzan Sofia1ORCID,Awan Muhammad Uzair1ORCID,Dragomir Silvestru Sever2ORCID,Bin-Mohsin Bandar3ORCID,Noor Muhammad Aslam4ORCID

Affiliation:

1. Department of Mathematics, Government College University, Faisalabad 38000, Pakistan

2. Mathematics, College of Engineering & Science, Victoria University, P. O. Box 14428, Melbourne City, MC 8001, Australia

3. Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

4. Department of Mathematics, COMSATS University Islamabad, Islamabad 45540, Pakistan

Abstract

This paper presents a novel parameterized fractional integral identity. By using this auxiliary result and the s-convexity property of the mapping, a series of fractional variants of certain classical inequalities, including Simpson’s, midpoint, and trapezoidal-type inequalities, have been derived. Additionally, some applications of our main outcomes to special means of real numbers have been explored. Moreover, we have derived a new generic numerical scheme for solving non-linear equations, demonstrating an application of our main results in numerical analysis.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference40 articles.

1. Dragomir, S.S., and Pearce, C. (2000). Selected Topics on Hermite-Hadamard Inequality and Applications, Victoria University.

2. Étude sur les propriétés des fonctions entiéres et en particulier d’une fonction considérée par Riemann;Hadamard;J. Mathématiques Pures Appliquées,1893

3. Sur deux limites d’une intégrale définie;Hermite;Mathesis,1883

4. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula;Dragomir;Appl. Math. Lett.,1998

5. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula;Kirmaci;Appl. Math. Comput.,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3