Finite-Interval Stability Analysis of Impulsive Fractional-Delay Dynamical System

Author:

Kaliraj K.1ORCID,Lakshmi Priya P. K.1ORCID,Nieto Juan J.2ORCID

Affiliation:

1. Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai 600005, India

2. CITMAga, Department of Estatística, Análisis Matemático e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

Abstract

Stability analysis over a finite time interval is a well-formulated technique to study the dynamical behaviour of a system. This article provides a novel analysis on the finite-time stability of a fractional-order system using the approach of the delayed-type matrix Mittag-Leffler function. At first, we discuss the solution’s existence and uniqueness for our considered fractional model. Then standard form of integral inequality of Gronwall’s type is used along with the application of the delayed Mittag-Leffler argument to derive the sufficient bounds for the stability of the dynamical system. The analysis of the system is extended and studied with impulsive perturbations. Further, we illustrate the numerical simulations of our analytical study using relevant examples.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference42 articles.

1. Abbas, S., Benchohra, M., Lazreg, J.E., Nieto, J.J., and Zhou, Y. (2023). Classical and Advanced Topics, World Scientific.

2. Fractional Calculus in Bioengineering;Magin;Crit. Rev. Biomed. Eng.,2004

3. Fractional euler numbers and generalized proportional fractional logistic differential equation;Nieto;Fract. Calc. Appl. Anal.,2022

4. Tarasov, V.E. (2011). Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer Science and Business Media.

5. On a new class of abstract impulsive differential equations;Proc. Am. Math. Soc.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3