Statistical Study of the Bias and Precision for Six Estimation Methods for the Fractal Dimension of Randomly Rough Surfaces

Author:

Flores Alarcón Jorge Luis1ORCID,Figueroa Carlos Gabriel2ORCID,Jacobo Víctor Hugo1ORCID,Velázquez Villegas Fernando1,Schouwenaars Rafael13ORCID

Affiliation:

1. Departamento de Diseño y Manufactura, Facultad de Ingeniería, Edificio O, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacan 04510, Ciudad de Mexico, Mexico

2. Departamento de Materiales y Manufactura, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Via de la Innovación 410, PIIT, Apodaca 66629, Nuevo León, Mexico

3. Department of Electromechanical, Systems and Metals Engineering, Ghent University, Technologiepark 46 Zwijnaarde, 9052 Ghent, Belgium

Abstract

The simulation and characterisation of randomly rough surfaces is an important topic in surface science, tribology, geo- and planetary sciences, image analysis and optics. Extensions to general random processes with two continuous variables are straightforward. Several surface generation algorithms are available, and preference for one or another method often depends on the specific scientific field. The same holds for the methods to estimate the fractal dimension D. This work analyses six algorithms for the determination of D as a function of the size of the domain, variance, and the input value for D, using surfaces generated by Fourier filtering techniques and the random midpoint displacement algorithm. Several of the methods to determine fractal dimension are needlessly complex and severely biased, whereas simple and computationally efficient methods produce better results. A fine-tuned analysis of the power spectral density is very precise and shows how the different surface generation algorithms deviate from ideal fractal behaviour. For large datasets defined on equidistant two-dimensional grids, it is clearly the most sensitive and precise method to determine fractal dimension.

Funder

CONACYT

DGAPA project

Publisher

MDPI AG

Reference73 articles.

1. The statistical analysis of a random, moving surface;Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.,1957

2. Statistical properties of an isotropic random surface;Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.,1957

3. The properties of random surfaces of significance in their contact;Whitehouse;Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci.,1970

4. Fractal dimension as working tool for surface-roughness problems;Pfeifer;Appl. Surf. Sci.,1984

5. Multilayer adsorption on a fractally rough surface;Pfeifer;Phys. Rev. Lett.,1989

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3