High-Frequency Fractional Predictions and Spatial Distribution of the Magnetic Loss in a Grain-Oriented Magnetic Steel Lamination

Author:

Ducharne Benjamin12ORCID,Hamzehbahmani Hamed3ORCID,Gao Yanhui4,Fagan Patrick5ORCID,Sebald Gael1ORCID

Affiliation:

1. ELyTMaX IRL3757, CNRS, Univ. Lyon, INSA Lyon, Centrale Lyon, Université Claude Bernard Lyon 1, Tohoku University, Sendai 980-8577, Japan

2. Univ. Lyon, INSA-Lyon, LGEF EA682, 69621 Villeurbanne, France

3. Department of Engineering, Durham University, South Road, Durham DH1 3LE, UK

4. Division of Mechatronics, Oita University, Oita 870-1192, Japan

5. Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique de Paris, 91192 Gif-sur-Yvette, France

Abstract

Grain-oriented silicon steel (GO FeSi) laminations are vital components for efficient energy conversion in electromagnetic devices. While traditionally optimized for power frequencies of 50/60 Hz, the pursuit of higher frequency operation (f ≥ 200 Hz) promises enhanced power density. This paper introduces a model for estimating GO FeSi laminations’ magnetic behavior under these elevated operational frequencies. The proposed model combines the Maxwell diffusion equation and a material law derived from a fractional differential equation, capturing the viscoelastic characteristics of the magnetization process. Remarkably, the model’s dynamical contribution, characterized by only two parameters, achieves a notable 4.8% Euclidean relative distance error across the frequency spectrum from 50 Hz to 1 kHz. The paper’s initial section offers an exhaustive description of the model, featuring comprehensive comparisons between simulated and measured data. Subsequently, a methodology is presented for the localized segregation of magnetic losses into three conventional categories: hysteresis, classical, and excess, delineated across various tested frequencies. Further leveraging the model’s predictive capabilities, the study extends to investigating the very high-frequency regime, elucidating the spatial distribution of loss contributions. The application of proportional–iterative learning control facilitates the model’s adaptation to standard characterization conditions, employing sinusoidal imposed flux density. The paper deliberates on the implications of GO FeSi behavior under extreme operational conditions, offering insights and reflections essential for understanding and optimizing magnetic core performance in high-frequency applications.

Publisher

MDPI AG

Reference45 articles.

1. Soft magnetic materials for a sustainable and electrified world;Silveyra;Science,2018

2. Bertotti, G. (1998). Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers, Gulf Professional Publishing.

3. Soft magnetic material status and trends in electric machines;Krings;IEEE Trans. Ind. Electron.,2016

4. Energy losses in soft magnetic materials under symmetric and asymmetric induction waveforms;Zhao;IEEE Trans. Power Electron.,2018

5. Modern soft magnets: Amorphous and nanocrystalline materials;Herzer;Acta Mater.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3