The Classification and Evaluation of an Interlayer Shale Oil Reservoir Based on the Fractal Characteristics of Pore Systems: A Case Study in the HSN Area, China

Author:

Lu Changsheng12,Wang Xixin12ORCID,Ma Shuwei3,Li Shaohua12ORCID,Xue Ting3,Li Qiangqiang12

Affiliation:

1. Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University (Ministry of Education & Hubei Province), Wuhan 430100, China

2. School of Geosciences, Yangtze University, Wuhan 430100, China

3. Exploration and Development Research Institute, PetroChina Changqing Oilfield, Xi’an 710018, China

Abstract

The evaluation of shale reservoir quality is of great significance for the exploration and development of shale oil. To more effectively study the distribution characteristics of shale reservoir quality, thin-section observation, scanning electron microscopy and pressure-controlled porosimetry were used to obtain the pore structure characteristics of shale in Chang 7, including pore types, pore size distribution, etc. In addition, the fractal dimensions of the shale samples were calculated based on pressure-controlled porosimetry data. The results show that residual interparticle pores, dissolution pores and clay-dominated pores were the main pore types. The overall pore size was mainly distributed between 3 nm and 50 μm. The pore system was divided into four types using fractal features, and the shale reservoir was divided into four types based on the proportion of different types of pore system. In different types of reservoirs, the production capacity of exploration wells varies significantly, as does the production capacity of horizontal wells. The classification of shale reservoirs using mercury intrusion fractal analysis proved to be suited for the efficient development of Chang 7 shale oil reservoirs.

Funder

Open Fund of Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University

CNPC Innovation Found

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3