Mixed Multi-Chaos Quantum Image Encryption Scheme Based on Quantum Cellular Automata (QCA)

Author:

Mohamed Nehal Abd El-Salam1ORCID,El-Sayed Hala2,Youssif Aliaa3

Affiliation:

1. Department of Computer Science, College of Information Technology, Misr University for Science & Technology (MUST), Giza 12566, Egypt

2. Department of Computer Science, College of Computers and Artificial Intelligence, Helwan University, Helwan 11795, Egypt

3. Department of Computer Science, College of Computing and Information Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Giza 12577, Egypt

Abstract

The advent of quantum computers could enable the resolution of complex computational problems that conventional cryptographic protocols find challenging. As a result, the formidable computing capabilities of quantum computers may render all present-day cryptographic schemes that rely on computational complexity ineffectual. Inspired by these possibilities, the primary purpose of this paper is to suggest a quantum image encryption scheme based on quantum cellular automata with mixed multi-chaos hybrid maps and a hyperchaotic system with quantum operations. To achieve desirable encryption outcomes, we designed an encryption scheme involving two main operations: (1) pixel-level diffusion and (2) pixel-level permutation. Initially, the secret keys generated using the hyperchaotic system were closely tied to the original image. During the first phase, the establishment of correlations among the image pixels, in addition to the three chaotic sequences obtained from the hyperchaotic system, was achieved with the application of a quantum-state superposition and measurement principle, wherein the color information of a pixel is described using a single qubit. Therefore, the three channels of the plain image were subjected to quantum operations, which involve Hadamard transformation and the quantum-controlled NOT gate, before the diffusion of each color channel with the hyperchaotic system. Subsequently, a quantum ternary Toffoli gate was used to perform the diffusion operation. Next, the appropriate measurement was performed on the three diffused channels. To attain the confusion phase, a blend of mixed multi-chaos hybrid maps and a two-dimensional quantum cellular automaton was used to produce random and chaotic sequence keys. Subsequently, the circular shift was utilized to additionally shuffle the rows and columns of the three diffused components, in order to alter the positions of their pixel values, which significantly contributes to the permutation process. Lastly, the three encoding channels, R, G, and B, were merged to acquire the encrypted image. The experimental findings and security analyses established that the designed quantum image encryption scheme possesses excellent encryption efficiency, a high degree of security, and the ability to effectively withstand a diverse variety of statistical attacks.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3