Modeling and Initialization of Nonlinear and Chaotic Fractional Order Systems Based on the Infinite State Representation

Author:

Trigeassou Jean-Claude1,Maamri Nezha2

Affiliation:

1. IMS Laboratory, University of Bordeaux, 33076 Bordeaux, France

2. LIAS Laboratory, University of Poitiers, 86000 Poitiers, France

Abstract

Based on the infinite state representation, any linear or nonlinear fractional order differential system can be modelized by a finite-dimension set of integer order differential equations. Consequently, the recurrent issue of the Caputo derivative initialization disappears since the initial conditions of the fractional order system are those of its distributed integer order differential system, as proven by the numerical simulations presented in the paper. Moreover, this technique applies directly to fractional-order chaotic systems, like the Chen system. The true interest of the fractional order approach is to multiply the number of equations to increase the complexity of the chaotic original system, which is essential for the confidentiality of coded communications. Moreover, the sensitivity to initial conditions of this augmented system generalizes the Lorenz approach. Determining the Lyapunov exponents by an experimental technique and with the G.S. spectrum algorithm provides proof of the validity of the infinite state representation approach.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference50 articles.

1. Khalil, H.K. (1996). Non Linear Systems, Prentice Hall.

2. Slotine, J.J.E., and Li, W. (1991). Applied Nonlinear Control, Prentice Hall.

3. Sastry, S. (1999). Nonlinear Systems, Springer.

4. Deterministic non-periodic flow;Lorenz;J. Atmos. Sci.,1963

5. Circuit implementation of synchronized chaos with applications to communications;Cuomo;Phys. Rev. Lett.,1993

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3