A New Approach to Determining the Network Fractality with Application to Robot-Laser-Hardened Surfaces of Materials

Author:

Babič Matej1,Marinković Dragan2ORCID

Affiliation:

1. Complex Systems and Data Science Laboratory, Faculty of Information Studies, 8000 Novo Mesto, Slovenia

2. Department of Structural Mechanics and Analysis, Faculty of Mechanical Engineering and Transport Systems, Technical University Berlin, 10623 Berlin, Germany

Abstract

A new method to determine a fractal network in chaotic systems is presented together with its application to the microstructure recognition of robot-laser-hardened (RLH) steels under various angles of a laser beam. The method is based on fractal geometry. An experimental investigation was conducted by investigating the effect of several process parameters on the final microstructures of material that has been heat-treated. The influences of the surface temperature, laser speed, and different orientation angles of the laser beam on the microstructural geometry of the treated surfaces were considered. The fractal network of the microstructures of robot-laser-hardened specimens was used to describe how the geometry was changed during the heat treatment of materials. In order to predict the fractal network of robot-laser-hardened specimens, we used a method based on intelligent systems, namely genetic programming (GP) and a convolutional neural network (CNN). The proposed GP model achieved a prediction accuracy of 98.4%, while the proposed CNN model reached 96.5%. The performed analyses demonstrate that the angles of the robot laser cell have a noticeable effect on the final microstructures. The specimen laser-hardened under the conditions of 4 mm/s, 1000 °C, and an impact angle of the laser beam equal to 75° presented the maximum fractal network. The minimum fractal network was observed for the specimen before the robot-laser-hardening process.

Funder

German Research Foundation and the Open Access Publication Fund of TU Berlin

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3