Abstract
Motivated from studies on anomalous relaxation and diffusion, we show that the memory function M(t) of complex materials, that their creep compliance follows a power law, J(t)∼tq with q∈R+, is proportional to the fractional derivative of the Dirac delta function, dqδ(t−0)dtq with q∈R+. This leads to the finding that the inverse Laplace transform of sq for any q∈R+ is the fractional derivative of the Dirac delta function, dqδ(t−0)dtq. This result, in association with the convolution theorem, makes possible the calculation of the inverse Laplace transform of sqsα∓λ where α<q∈R+, which is the fractional derivative of order q of the Rabotnov function εα−1(±λ,t)=tα−1Eα,α(±λtα). The fractional derivative of order q∈R+ of the Rabotnov function, εα−1(±λ,t) produces singularities that are extracted with a finite number of fractional derivatives of the Dirac delta function depending on the strength of q in association with the recurrence formula of the two-parameter Mittag–Leffler function.
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Reference35 articles.
1. Bateman Manuscript Project, Tables of Integral Transforms Vol I,1954
2. An Introduction to Fourier Analysis and Generalised Functions;Lighthill,1958
3. Generalized Functions, Vol. 1 Properties and Operations;Gel’fand,1964
4. A study of elastic viscous deformation;Nutting;Proc. Am. Soc. Test. Mater.,1921
5. A Method of Analyzing Experimental Results Obtained from Elasto‐Viscous Bodies
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献