Abstract
In this paper, the fractal derivative is introduced into a neural network-based discrete-time fractional-order PID controller in two areas, namely, in the controller’s structure and in the parameter optimization algorithm. The first use of the fractal derivative is to reconstruct the fractional-order PID controller by using the Hausdorff difference and Hausdorff sum derived from the Hausdorff derivative and Hausdorff integral. It can avoid the derivation of the Gamma function for the order updating to realize the parameter and order tuning based on neural networks. The other use is the optimization of order and parameters by using Borges derivative. Borges derivative is a kind of fractal derivative as a local fractional-order derivative. The chain rule of composite function is consistent with the integral-order derivative. It is suitable for updating the parameters and the order of the fractional-order PID controller based on neural networks. This paper improves the neural network-based PID controller in two aspects, which accelerates the response speed and improves the control accuracy. Two illustrative examples are given to verify the effectiveness of the proposed neural network-based discrete-time fractional-order PID control scheme with fractal derivatives.
Funder
Liaoning Revitalization Talents Program
Natural Science Foundation of Liaoning Province, China
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献