Analysis and Experimental Verification of the Sealing Performance of PEM Fuel Cell Based on Fractal Theory

Author:

Lv Bao1,Han Kai12,Wang Yongzhen12,Li Xiaolong1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China

Abstract

Aiming to accurately predict the leakage rate of the sealing interface, this work proposes a two-dimensional finite element model of a proton exchange membrane fuel cell, which includes the microscopic surface morphology and the asperity contact process of the components. First of all, we constructed the surface morphology of the seal by the two-dimensional W-M (Weierstrass–Mandelbrot) fractal function and explored the influence of fractal dimension (D) and scale parameter (G) on the surface profile. Furthermore, the finite element method and Poiseuille fluid theory were adopted to obtain the deformation variables of the asperity under different clamping pressures and leakage rates. Moreover, we quantitatively analyzed the impact of surface roughness on the clamping pressure and leakage rate. It was found that both the surface amplitude and surface roughness are positively correlated with G and negatively correlated with D. Surface morphology is proportional to D but has no relationship with G. Additionally, the deformation asperity decreases exponentially with growing clamping pressure, and the leakage rate is consistent with the experimental values at a clamping pressure of 0.54 MPa. With the same leakage rate, when the seal surface roughness value is less than 1 μm, a doubled roughness value leads to an increase of 31% in the clamping pressure. In contrast, when the surface roughness of the seal is greater than 1 μm, a doubled roughness value induces an increase of 50% in the corresponding clamping pressure.

Funder

the Key-Area Research and Development Program of Guangdong Province

the Natural Science Foundation of Chongqing, China

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3