Stock Index Return Volatility Forecast via Excitatory and Inhibitory Neuronal Synapse Unit with Modified MF-ADCCA

Author:

Wang Luochao1,Lee Raymond S. T.1ORCID

Affiliation:

1. Department of Computer Science, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519000, China

Abstract

Financial prediction persists a strenuous task in Fintech research. This paper introduces a multifractal asymmetric detrended cross-correlation analysis (MF-ADCCA)-based deep learning forecasting model to predict a succeeding day log return via excitatory and inhibitory neuronal synapse unit (EINS) using asymmetric Hurst exponent as input features, with return and volatility increment of Shanghai Stock Exchanges Composite Index (SSECI) from 2014 to 2020 as proxies for analysis. Experimental results revealed that multifractal elements by MF-ADCCA method as input features are applicable to time series forecasting in deep learning than multifractal detrended fluctuation analysis (MF-DFA) method. Further, the proposed biologically inspired EINS model achieved satisfactory performances in effectiveness and reliability in time series prediction compared with prevalent recurrent neural networks (RNNs) such as LSTM and GRU. The contributions of this paper are to (1) introduce a moving-window MF-ADCCA method to obtain asymmetric Hurst exponent sequences used directly as an input feature for deep learning prediction and (2) evaluate performances of various asymmetric multifractal approaches for deep learning time series forecasting.

Funder

Beijing Normal University-Hong Kong Baptist University United International College

Guangdong Province F1

Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3